$\require{\cancel}$ $\require{\stix[upint]}$

### MATHEMATICS 9709

#### Cambridge International AS and A Level

 Name of student Date Adm. number Year/grade Stream Subject Pure Mathematics 1 (P1) Variant(s) P11, P12, P13 Start time Duration Stop time

Qtn No. 1 2 3 4 5 6 7 8 9 10 11 12 Total
Marks 5 4 5 5 5 6 8 8 11 12 15 10 94
Score

Get Mathematics 9709 Topical Questions (2010-2021) for $14.5 per Subject. Attempt all the 12 questions Question 1 Code: 9709/11/M/J/19/1, Topic: Series The term independent of$x$in the expansion of$\displaystyle \left(2 x+\frac{k}{x}\right)^{6}$, where$k$is a constant, is 540.$\text{(i)}$Find the value of$k$.$[3]\text{(ii)}$For this value of$k$, find the coefficient of$x^{2}$in the expansion.$[2]$Question 2 Code: 9709/13/M/J/16/2, Topic: Integration The diagram shows part of the curve$\displaystyle y=\left(x^{3}+1\right)^{\frac{1}{2}}$and the point$P(2,3)$lying on the curve. Find, showing all necessary working, the volume obtained when the shaded region is rotated through$360^{\circ}$about the$x$-axis.$[4]$Question 3 Code: 9709/12/M/J/18/3, Topic: Series A company producing salt from sea water changed to a new process. The amount of salt obtained each week increased by$2 \%$of the amount obtained in the preceding week. It is given that in the first week after the change the company obtained$8000 \mathrm{~kg}$of salt.$\text{(i)}$Find the amount of salt obtained in the 12 th week after the change.$[3]\text{(ii)}$Find the total amount of salt obtained in the first 12 weeks after the change.$[2]$Question 4 Code: 9709/13/M/J/18/3, Topic: Series The common ratio of a geometric progression is$0.99$. Express the sum of the first 100 terms as a percentage of the sum to infinity, giving your answer correct to 2 significant figures.$[5]$Question 5 Code: 9709/11/M/J/20/3, Topic: Series Each year the selling price of a diamond necklace increases by$5 \%$of the price the year before. The selling price of the necklace in the year 2000 was$\$36000$.

$\text{(a)}$ Write down an expression for the selling price of the necklace $n$ years later and hence find the selling price in 2008. $[3]$

$\text{(b)}$ The company that makes the necklace only sells one each year. Find the total amount of money obtained in the ten-year period starting in the year 2000. $[2]$

Question 6 Code: 9709/13/M/J/17/4, Topic: Vectors

Relative to an origin $O$, the position vectors of points $A$ and $B$ are given by

$$\overrightarrow{O A}=\left(\begin{array}{l} 5 \\ 1 \\ 3 \end{array}\right) \quad \text { and } \quad \overrightarrow{O B}=\left(\begin{array}{r} 5 \\ 4 \\ -3 \end{array}\right)$$

The point $P$ lies on $A B$ and is such that $\overrightarrow{A P}=\frac{1}{3} \overrightarrow{A B}$.

$\text{(i)}$ Find the position vector of $P$. $[3]$

$\text{(ii)}$ Find the distance $O P$. $[1]$

$\text{(iii)}$ Determine whether $O P$ is perpendicular to $A B$. Justify your answer. $[2]$

Question 7 Code: 9709/13/M/J/18/8, Topic: Differentiation

$\text{(i)}$ The tangent to the curve $y=x^{3}-9 x^{2}+24 x-12$ at a point $A$ is parallel to the line $y=2-3 x$. Find the equation of the tangent at $A$. $[6]$

$\text{(ii)}$ The function $\mathrm{f}$ is defined by $\mathrm{f}(x)=x^{3}-9 x^{2}+24 x-12$ for $x>k$, where $k$ is a constant. Find the smallest value of $k$ for $\mathrm{f}$ to be an increasing function. $[2]$

Question 8 Code: 9709/13/M/J/19/8, Topic: Integration

A curve is such that $\displaystyle\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}+a x+b$. The curve has stationary points at $(-1,2)$ and $(3, k)$. Find the values of the constants $a, b$ and $k$. $[8]$

Question 9 Code: 9709/12/M/J/14/9, Topic: Differentiation, Integration

The diagram shows part of the curve $y=8-\sqrt{(} 4-x)$ and the tangent to the curve at $P(3,7)$.

$\text{(i)}$ Find expressions for $\displaystyle\frac{\mathrm{d} y}{\mathrm{~d} x}$ and $\displaystyle\int y \mathrm{~d} x$. $[5]$

$\text{(ii)}$ Find the equation of the tangent to the curve at $P$ in the form $y=m x+c$. $[2]$

$\text{(iii)}$ Find, showing all necessary working, the area of the shaded region. $[4]$

Question 10 Code: 9709/12/M/J/12/10, Topic: Functions

Functions $\mathrm{f}$ and $\mathrm{g}$ are defined by

\begin{aligned} &\mathrm{f}: x \mapsto 2 x+5 \quad \text { for } x \in \mathbb{R} \\ &\mathrm{g}: x \mapsto \frac{8}{x-3} \quad \text { for } x \in \mathbb{R}, x \neq 3 \end{aligned}

$\text{(i)}$ Obtain expressions, in terms of $x$, for $\mathrm{f}^{-1}(x)$ and $\mathrm{g}^{-1}(x)$, stating the value of $x$ for which $\mathrm{g}^{-1}(x)$ is not defined. $[4]$

$\text{(ii)}$ Sketch the graphs of $y=\mathrm{f}(x)$ and $y=\mathrm{f}^{-1}(x)$ on the same diagram, making clear the relationship between the two graphs. $[3]$

$\text{(iii)}$ Given that the equation $f g(x)=5-k x$, where $k$ is a constant, has no solutions, find the set of possible values of $k$. $[5]$

Question 11 Code: 9709/12/M/J/14/10, Topic: Functions

Functions $\mathrm{f}$ and $\mathrm{g}$ are defined by

\begin{aligned} &\mathrm{f}: x \mapsto 2 x-3, \quad x \in \mathbb{R}, \\ &\mathrm{g}: x \mapsto x^{2}+4 x, \quad x \in \mathbb{R}. \end{aligned}

$\text{(i)}$ Solve the equation $\mathrm{ff}(x)=11$. $[2]$

$\text{(ii)}$ Find the range of $\mathrm{g}$. $[2]$

$\text{(iii)}$ Find the set of values of $x$ for which $\mathrm{g}(x)>12$. $[3]$

$\text{(iv)}$ Find the value of the constant $p$ for which the equation $\operatorname{gf}(x)=p$ has two equal roots. $[3]$

Function $\mathrm{h}$ is defined by $\mathrm{h}: x \mapsto x^{2}+4 x$ for $x \geqslant k$, and it is given that $\mathrm{h}$ has an inverse.

$\text{(v)}$ State the smallest possible value of $k$. $[1]$

$\text{(vi)}$ Find an expression for $\mathrm{h}^{-1}(x)$. $[4]$

Question 12 Code: 9709/13/M/J/12/11, Topic: Functions

The function $\mathrm{f}$ is such that $\mathrm{f}(x)=8-(x-2)^{2}$, for $x \in \mathbb{R}$.

$\text{(i)}$ Find the coordinates and the nature of the stationary point on the curve $y=\mathrm{f}(x)$. $[3]$

The function $\mathrm{g}$ is such that $\mathrm{g}(x)=8-(x-2)^{2}$, for $k \leqslant x \leqslant 4$, where $k$ is a constant.

$\text{(ii)}$ State the smallest value of $k$ for which $\mathrm{g}$ has an inverse. $[1]$

For this value of $k$,

$\text{(iii)}$ find an expression for $\mathrm{g}^{-1}(x)$, $[3]$

$\text{(iv)}$ sketch, on the same diagram, the graphs of $y=\mathrm{g}(x)$ and $y=\mathrm{g}^{-1}(x)$. $[3]$

Worked solutions: P1, P3 & P6 (S1)

If you need worked solutions for P1, P3 & P6 (S1), contact us @ [email protected] | +254 721 301 418.

1. Send us the link to these questions ( https://stemcie.com/view/111 ).
2. We will solve the questions and provide you with the step by step worked solutions.
3. We will then schedule a one to one online session to take you through the solutions (optional).