$\require{\cancel}$ $\require{\stix[upint]}$
Name of student | HENRYTAIGO | Date | |||
Adm. number | Year/grade | HenryTaigo | Stream | HenryTaigo | |
Subject | Pure Mathematics 3 (P3) | Variant(s) | P31, P32, P33 | ||
Start time | Duration | Stop time |
Qtn No. | 1 | 2 | 3 | 4 | 5 | 6 | Total |
---|---|---|---|---|---|---|---|
Marks | 10 | 7 | 10 | 10 | 10 | 10 | 57 |
Score |
Question 1 Code: 9709/31/M/J/14/8, Topic: Numerical solutions of equations
$\text{(i)}$ By sketching each of the graphs $y=\operatorname{cosec} x$ and $y=x(\pi-x)$ for $0 < x < \pi$, show that the equation
$$ \operatorname{cosec} x=x(\pi-x) $$has exactly two real roots in the interval $0 < x < \pi$. $[2]$
$\text{(ii)}$ Show that the equation $\operatorname{cosec} x=x(\pi-x)$ can be written in the form $\displaystyle x=\frac{1+x^{2} \sin x}{\pi \sin x}$. $[2]$
$\text{(iii)}$ The two real roots of the equation $\operatorname{cosec} x=x(\pi-x)$ in the interval $0 < x < \pi$ are denoted by $\alpha$ and $\beta$, where $\alpha < \beta$.
$\text{(a)}$ Use the iterative formula
$$ \displaystyle x_{n+1}=\frac{1+x_{n}^{2} \sin x_{n}}{\pi \sin x_{n}} $$to find $\alpha$ correct to 2 decimal places. Give the result of each iteration to 4 decimal places. $[3]$
$\text{(b)}$ Deduce the value of $\beta$ correct to 2 decimal places. $[1]$
Question 2 Code: 9709/32/M/J/14/8, Topic: Differentiation
The diagram shows the curve $y=x \cos \frac{1}{2} x$ for $0 \leqslant x \leqslant \pi$.
$\text{(i)}$ Find $\displaystyle\frac{\mathrm{d} y}{\mathrm{~d} x}$ and show that $4 \displaystyle\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+y+4 \sin \frac{1}{2} x=0$. $[5]$
$\text{(ii)}$ Find the exact value of the area of the region enclosed by this part of the curve and the $x$-axis. $[5]$
Question 3 Code: 9709/33/M/J/14/8, Topic: Algebra, Integration
Let $\displaystyle\mathrm{f}(x)=\frac{6+6 x}{(2-x)\left(2+x^{2}\right)}$.
$\text{(i)}$ Express $\mathrm{f}(x)$ in the form $\displaystyle\frac{A}{2-x}+\frac{B x+C}{2+x^{2}}$. $[4]$
$\text{(ii)}$ Show that $\displaystyle\int_{-1}^{1} \mathrm{f}(x) \mathrm{d} x=3 \ln 3$. $[5]$
Question 4 Code: 9709/31/O/N/14/8, Topic: Trigonometry
$\text{(i)}$ By first expanding $\sin (2 \theta+\theta)$, show that $[4]$
$$ \sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta. $$$\text{(ii)}$ Show that, after making the substitution $\displaystyle x=\frac{2 \sin \theta}{\sqrt{3}}$, the equation $x^{3}-x+\frac{1}{6} \sqrt{3}=0$ can be written in the form $\sin 3 \theta=\frac{3}{4}$. $[1]$
$\text{(iii)}$ Hence solve the equation
$$ x^{3}-x+\frac{1}{6} \sqrt{3}=0, $$giving your answers correct to 3 significant figures. $[4]$
Question 5 Code: 9709/32/O/N/14/8, Topic: Trigonometry
Question 6 Code: 9709/33/O/N/14/8, Topic: Differentiation
The variables $x$ and $y$ are related by the differential equation
$$ \displaystyle\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{5} x y^{\frac{1}{2}} \sin \left(\frac{1}{3} x\right) \text {. } $$$\text{(i)}$ Find the general solution, giving $y$ in terms of $x$. $[6]$
$\text{(ii)}$ Given that $y=100$ when $x=0$, find the value of $y$ when $x=25$. $[3]$